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Abstract-It is shown that the well known quasi steady-state approximation of chemical reaction 
kinetics can be refined in a rigorous manner by the use of a powerful mathematical technique known as 
the method of singular perturbations. For the purpose of bringing out the essential features of this 
technique four typical kinetic schemes are analysed, namely those of reactions: 
R + I + P; R % I % P; R + I; -21 s P; and R + M f I + P + M; R + I + P; the latter corres- 
ponding to the case of thermal decomposition of ozone. 

INTRODUCTION 

THE “quasi-steady state approximation” (hereafter 
abbreviated Q.S.S.A.) for the reactive intermediate 
species, fxst introduced by BODENSTEIN and 
LUTKEMEYER [l], has generally led to essential 
simplifications in the differential equations which 
describe the instantaneous behaviour of reacting 
chemical species. In many cases, the use of this 
approximation has resulted in closed form analytical 
solutions for kinetic schemes which otherwise are 
mathematically tractable only by numerical tech- 
niques. The criteria for employing the Q.S.S.A. 
have been that both the concentration of the inter- 
mediate species and the relaxation time for approach 
to the “quasi-steady state concentration” (hereafter 
referred to as Q.S.S.C.) be small. 

The regime of applicability of this assumption and 
the error resulting from its utilization have been 
considered by several authors [2-6]. The most 
notable efforts have been those of BENSON [2] and 
of GIDDINGS and SHIN [5] .  The former obtained, 
for simple kinetic schemes, analytical solutions for 
the deviation of the reactive intermediate concen- 
tration from the Q.S.S.C. and sought by general 
considerations to extend his results to more complex 
systems ; whereas the latter endeavoured to improve 
upon the Q.S.S.A. by what they termed a small per- 
turbation solution of the mathematical equations. 

As this paper is written to clarify several critical 
aspects of GIDDINGS and SHIN’S analysis, the key 
feature of their work wiU now be briefly considered. 
After introducing an equilibrium departure term E 

defined by 

[I] = [13*(1 + E )  

where [I] and [I]* are respectively the actual con- 
centration and the Q.S.S.C. of the intermediate 
species, GIDDINGS and SHIN derive a differential 
equation for E, assumed small, by substituting 
equation (1) into the rate expression for the reactive 
intermediate and neglecting all the non-linear terms 
in E .  Since, however, it is usually postulated that 
initially [I] is zero, GIDDINGS and SHIN’S analysis 
requires that E = -1 at time t = 0, and thus, a 
parameter normally considered small is forced to 
be of order unity at small times. But a more serious 
objection, which also applies to the analysis of 
HIRSCHFELDER [6] and which will be considered in 
more detail later on, is that a consistently developed 
perturbation solution based upon the Q.S.S.A. can- 
not in general yield higher order terms (in this case 
E )  which will satisfy an arbitrary initial condition. 
One must then conclude that the satisfactory results 
demonstrated by GIDDINGS and SHIN may be for- 
tuitous and that an adequate approximation to the 
exact solution may not necessarily result from 
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( 0 )  applying their method to more complex kinetic 
schemes. 

The purpose of this Paper is then to clarify, in a 
more mathematically consistent manner, the nature 
and consequence of the Q.S.S.A. and to develop a 

where, aside from the multiplying factor A/[R],, y, 
obviously corresponds to the Q.S.S.C. of the re- 
active intermediate. Now, a natural development 
would be to generate correction terms to the 
Q.S.S.C. by means of a series solution in inverse 

rigorous scheme for generating higher-order terms 
to the solution of kinetic equations. 

AN OUTLINE OF THE SINGULAR 
PERTURBATION METHOD 

In order to illustrate our method of attack we 
shall now discuss at some length the very simple 
reaction scheme 

R 2 1  

1 2 P  

in which both kinetic steps are first order. 
Let 

Then, the appropriate differential equations are 

_ -  - -91 d91 
dt = 1 

the exact solutions to which, y ,  and y ,  respectively, 
are well known 

91 = exP(-z) 

and 
A 

A - 1  
j 2  =- [exp(-z) - exp(-Az)] A # 1 

or 

E, = z exp( - z) A = l  

For purposes of illustration, however, we shall 
now attempt to construct the function 9, without 
referring to the exact solution. In particular it is 
clear from equation (3) that when 1 + co, and 
unless dj,/dT also becomes infinite 

yi = p1 = exp( - z) 

powers of A of the form 

In this manner, equations for each of the perturba- 
tion functions $’i(z) can be easily derived by sub- 
stituting the series into equation (3) and then 
equating terms of equal powers in A. There results 

Fi = exp(-z) 

from which it readily follows that 

so that 

(4) 

It is immediately apparent now that the solution 
given by equation (4) does not contain adjustable 
constants and cannot therefore be made to satisfy 
the initial condition. This result is of course not 
surprising since the functions $’; were obtained from 
algebraic rather than differential equations. Ac- 
tually, the method of solution presented above will 
cease to apply for values of z sufficiently close to 
zero no matter how large the magnitude of A, since 
clearly even for A --f 00 there must exist a small but 

quickly rise from its initial zero value to the Q.S.S.C. 
Thus the term 

finite “relaxation” time interval where 9, will -\ 

/ 

-- 
A dz 

in equation (3) which to a first approximation was 
neglected, must obviously become at least as 
important as the other two terms for z - 0. It 
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becomes necessary therefore to develop, for t -g 1, 
a different solution to equation (3) which will satisfy 
the initial conditions and which, as t increases, will 
join smoothly with the function y ,  given by 
equation (4). 

To arrive at  this solution, which we shall denote 
by Y,, we first modify our co-ordinate system so 
that all terms of the differential equation (3) become 
of the same order of magnitude even in the limit 
3, + 03. The appropriate co-ordinate transforma- 
tion is o = AT, and therefore, since 

y ,  = exp( - 7) = exp( - a/>.) 

d Y, 
- = exp( - w / i )  - Y, 
d o  

The exact solution of equation (5) is once again 

1 
Y, = {exp( - w / i )  - exp( - o)} 1 - (l/A) i Z 1  

or 

Y2 = o exp( - o) 1, = 1 

Now to continue in the same vein as in our earlier 
development, we shall seek a solution for Y ,  by a 
perturbation expansion of the form 

When this series is substituted into equation ( 5 )  
and exp(- w/A) is expanded in a Taylor’s series 
there results 

g” (“) 
-- -(-1)”-- Y2 1220 
do n !  

Solutions for the first few perturbation functions, 

subject to the initial conditions Y(0) = 0 for 
n > 0, are 

(”) 

( 0 )  

Y, = 1 - exp( - o) 

Y, = -(o - 1) - exp(-w) 
( 1 )  

(*) 02-22w+2 
Y, = - exp( - o) 

2 

and thus a solution valid for small values of time is ~ 

1 
2 i  

+ 7 [02 - 2 0  + 2 - 2 exp(-w)] + 0 

Following now an established convention [7, 81, 
we shall refer to y ,  as the “outer” solution and to 
Y,  as the “inner” solution; and since both represent 
different forms of the same function ŷ ,-the exact 
solution to equation (3)-we must require that y ,  
for T -+ 0 identically match Y,  for o -+ 03. It is 
indeed true that, as will be presently demonstrated, 
this matching requirement is automatically satisfied 
for this simple example; but for mathematical prob- 
lems of greater complexity the matching condition 
becomes indispensable since it allows us to evalute 
the arbitrary constants that often appear in both 
the “inner” and the “outer” solutions. This par- 
ticular point will, however, be considered later in 
more detail. 

From equation (4), expanding the exponential 
term with t w / i  

1 1  
x 1 + 7 + - + 0 -  [ A 1’ (i3)) 

which, by collecting terms of equal powers in 1, 
may be rearranged into 

l i m y 2 = 1 + T ( 1 - o ) +  1 
T+ 0 A 

+ y + + l ) + O ( $ )  i2 

Similarly, from equation (6) 

liin Y, = 1 + - 1 (1 - 0) + 
i a+ oc 

+-  - - o + l  + o -  
A 2  (T 1 C 3 )  

Thus the matching requirement is identically met 
for terms up to O(l/i3), but as can easily be shown, 
the matching will still remain valid if additional 
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History of concentration ot intermediate species FIG. 1. 
for the case of 

k k 2  R 2 I + P with 

I ,  exact solution, 2, inner solution up to O(l/h3); 3, 

h = kz/kl = IO 

outer solution up to O(l/h3); 4, Q.S.S.C. 

terms in the two expansions are retained. Both 
inner and outer solutions are plotted along with 
the exact solution and the Q.S.S.C. in Fig. 1 for 
1 = 10. 

The general form of the solutions to equation (3) 
is by no means merely an isolated phenomenon, 
but a behaviour common to a large variety of prob- 
lems in mathematical physics. The distinguishing 
feature of our simple example has been of course 
that for large 1. the exact solution could be approxi- 
mated to any desired degree of accuracy by the 
“outer” solution y,-which was derived from a 
straightforward perturbation expansion about the 
Q.S.S.A.--everywhere except for z sufficiently 
small. Thus, a “boundary layer” phenomenon, so 
familiar to hydrodynamicists, was encountered in 
which the true solution j 2  was found to change 
rapidly, over a short time interval of 0(1/1), from 
a value given by equation (4) with z -+ 0 to the 
prescribed initial condition. Such perturbation ex- 
pansions, similar to the “outer” solution y ,  pre- 
sented above, have been termed “singular”, since 
they do not lead to a uniformly valid approximation 
to the true solution throughout the whole domain 
of interest, and the mathematical technique which 
has been developed for solving such equations, 
primarily in fluid mechanics [&l 11, has become 
known as the “singular perturbation method”. 

The examples which follow will, it is hoped, illus- 
trate the steps of the singular perturbation tech- 
nique more fully and show why it is ideally suited 
as an analytical tool for those problems in chemical 
kinetics for which the Q.S.S.A. ceases to be 
adequate and must therefore be refined. 

THE USEFULNESS OF THE MATCHING REQUIREMENT 

Let us next consider a system with two simul- 
taneous reversible first-order reactions 

If 
CR1 A M I 1  9 = , y 2 - -  

CRlo CRlo 
1-- 

z k,t , A CPJ y 3  = - 
CRlO’ 

the differential equations are 

where the dimensionless concentration j 3  has been 
eliminated by the mass-conservation relation 

9 2  

1 2  
91 + - + + 3 =  1 + y :  E C 

i.e. C is the value of the sum as z -+ 0. 
In order to examine the behaviour of the solution 

without any loss of generality let us consider a 
specific caie where 1, = 1, A3 = 2, C = 1 while 
leaving A2 1 as the perturbation parameter. The 
differential equations to be solved are then 

(7) 
1 

El(0) = 1 _ -  - -91+x92 d91 
L i t  
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It is now clear that, as the two equations are coupled 
both 9, and j, must be expanded in perturbation 
series similar to those presented in the previous 
example. Thus, for the “outer” region 

For the “outer” solution we have: 

1 
1 y, = co exp(-r) + - p - (cot - c,) exp(-t)l + 

y, = 2 - C, exp(-t) + 
(“-1) dy; ’ )  

1 
i 

9 ,  = - I;; - 3y, - - n > €  
+- [- 8 + {C,(r + 2) - C,} exp(--)l + dt ’ 

whereas for the “inner” solutions Y, and Y, 

d 2; -- - 0  
dw 

(01 

d Y, ( 0 )  ( 0 )  

- = 2 - Y , - Y 2  
dw whereas, for the “inner” solution 

1 
1 

Y , = l - - w +  

(4 
(“ -1 )  (“12) 3- _ -  Y, + 1, 

dw and 
n > 2  

(“) (”) (“-1) Y, = 1 - exp(-w) + 
- y1 - Y, - 3y2 n 2 . I  

d?2 

do 1 
+7[w-4+(3w+4)exp(-o) l  + 

I> It should be carefully noted at this point, however, 

form of the “outer” solution cannot be derived 
that, in contrast to our first example, the complete 

without the a priori knowledge of the “inner” 
solution. Thus, it would be incorrect to specify 
that ;“:(O) = 1 and @:(O)  = 0 for n 2 1, since, for 
the reasons stated earlier, it would be improper 
to assume that the “outer” solution can be retained 
for t 6 1. It follows, therefore, that the “outer” 
solutions 37, and y,, as obtained by solving difleren- 

must contain a set of undetermined constants which 
tial equations for yi and algebraic equations for yi, 
can be evaluated only from the matching require- 
ment between the “inner” and the “outer” solutions. 
This is illustrated below. 

w2 + 2 

N ~ ~ ,  with E 

lim y, = c, + ~ 1 c2 + c, - cowl + 

r - ~  A 

+ - 8 + cz - ~ ( C O  + cd + - 2 c o  
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lim y ,  = 2 - C, + 
r - 0  

1 + /z [2C, - 8 - c, + C,w] + 

32 - 5co + 2c l  - c2 + o(c1 - co) - 

- - CO oz] + o($) 
? 

1 
lim Y1 = 1 - T (w) + 

A W- m 

1 ( i 3 )  

1 w2 
+ - - + w - 1  + o -  j2i 2 

1 
Iim Y ,  = 1 + (- 4 + 0) + 

1. lu- % 

+ -  1 6 - 3 ~ - -  
A2 ‘i 

from which it follows that the matching requirement 
is met identically for all terms up to O(l /A3)  if 

c,=1, c,= - 2 ,  c 2 = 7  

Incidentally, the numerical values of these co- 
efficients would of course have been different if one 
had required, incorrectly, that the “outer” solution 
y ,  should satisfy the initial condition at z = 0. 

THE BREAKDOWN OF THE Q.S.S.A. FOR LARGE TIMES 

Even though in the two cases so far considered 
it was found possible to develop the exact solution 
in terms of an “inner” and an “outer” solution, the 
latter based on the Q.S.S.A., it should not be 
erroneously inferred that for all possible kinetic 
schemes subjected to an identical treatment, one 
should always be able to approximate the exact 
solution by only two expansions, each valid over a 
well defined range of z. As the next two examples 
will demonstrate, an additional expansion may be 
required, since the “outer” solution based on the 
Q.S.S.A. may, under certain conditions, break down 
at some finite value of z. This may occur for the 
following reason. If one formally expresses the 
“outer” solution as 

one implicitly assumes of course that for 1 suf- 
ficiently large 

1;; + (”y+z ’ ) /~  for ail z (9) 

We have already shown, however, that equation (9) 
cannot hold for sufficiently small z and it is reason- 
able to suppose that, perhaps, it may also fail for 
sufficiently large z. This, in turn, would imply a 
breakdown of the Q.S.S.A. for both small and large 
5.  Unfortunately, since a set of rules for deriving a 
valid solution cannot be easily prescribed, each 
differential equation must be considered separately. 
The next two examples will illustrate the technique 
for circumventing this difficulty. 

P 

I 

Consider the relatively simple scheme 
k i  

R + 1  

2 1 + P  
IC 2 

and let 

Then the appropriate equations are 

and since for all z 

9 ,  = exp( - z) 

it follows that 

1 d92 - - = exp( - z) - (j2)’ A nz 

Although the solution to equation (1 I )  may be 
obtained by standard methods [12] and is found to 
be 

where 
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and Z,(x) and K,(x) are, respectively, modified 
Bessel’s functions of the first and second kind of 
order p and with argument x 1131, we shall, as in 
the previous two examples, develop an “outer” and 
“inner” perturbation expansion for this problem. 
We find by following our procedure that with the 
Q.S.S.A. as the leading term the “outer” solution is 

1 
y ,  = exp (TI + 7 - 1 exp (3 + 

4/. 32i2 

1 + - exp(r) + 0 - 
64.3 (3 

while the “inner” solution is 

1 - exp( -20) 
Y, = 

We now perceive, however, that although as in the 
first example, the matching requirement is identi- 
cally satisfied, the outer expansion ceases to 
represent a uniformily valid approximation to the 
exact solution when 

1 
exp - -- (z‘) 41. 

or 

T - 2 In 41, 

Consequently, the Q.S.S.A. remains valid only as 
long as T 4 2 In 41. For larger T ,  a third expansion 
must clearly be sought and matched to the outer 
solution as T + 00 if the behaviour of the reactive 
intermediate is to be correctly predicted for all T. 
To establish this “far out” solution we seek a 
transformation of both the co-ordinate system and 
the dependent variable which will make the solution 
both independent of 1 as A + 00 and uniformly 
valid for all T >> 1. This may be accomplished by 
setting 

and 
z = 19, 

4 = 1, exp( - T) 

so that the differential equation for y 2  becomes 

This is equivalent to equation (11) and in view of 
equation (1 la) 

(13) 
r =  -~{CZ1(2~’”)  + K1(2~/”~)}  

C10(2$9  - K0(2rp2)  

For this very special case the “far out” solution, 
equation ( I  3), could be made identical to the exact 
solution, equation (1 la), but, in order to bring out 
more clearly the essential features of the singular 
perturbation technique, we shall determine the 
constant C by matching the “outer” solution y ,  as 
T + 03 to the “far out” solution z as ‘I --t co. 

Since 
y,+exp(--r/2) as T +  co 

this is equivalent to requiring that 

z+q1I2 as q + c o  

Now, if we employ the well established asymptotic 
expansion [13] for I,, Z,, KO and K, ,  we find that 

- V ’ ’ ~ { C  + II e~p(-4r]’’~)) 
lim z = 

C - n exp( 

from which it clearly follows that the only per- 
missible value for C is zero. Thus the appropriate 
“far out” solution for 2 9 1 is 

11- W 

which, it should be noted, does not contain 1 
explicity. The exact inner, outer and “far out” 
solutions are sketched in Fig. 2 for 1 = 10. 

It is fair to remark, however, that, in this par- 
ticular case at any rate, the use of the Q.S.S.A. and 
the subdivision of the solution into three rather 
than two distinct forms is strictly speaking un- 
necessary. It can be easily verified that a straight- 
forward perturbation expansion, with equation 
(13a) rather than the Q.S.S.A. as the first term, will 
yield a solution which is uniformly valid throughout 
the complete “outer” region. Thus, it may perhaps 
be somewhat artificial to speak of an “outer” and 
a “far out” solution, since both may be meshed 
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11 
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< O  

x 
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oc 

FIG. 2. History of concentration of intermediate 
species for the case of 

k k2 R f - I ;  2 1 - t P  with h = j ( ; [ R ] o )  = 10 

1, exact solution; 2, inner solution up to O(l/As); 
3, outer solution up to O(l jA2) ;  4, “far out” solution 

up to O(l /h ) ;  5 ,  Q.S.S.C. 

into a single function by a suitable transformation ; 
but since a perturbation solution with the Q.S.S.A. 
as the first term can usually be constructed with 
ease and since the range of validity of this expansion 
does generally extend over the most important part 
of the “outer” region, there are obvious merits in 
retaining the technique presented above. 

THE THERMAL DECOMPOSITION OF OZONE 

The final example is the first application of our 
method to a kinetic scheme of a more practical 
importance, namely the thermal decomposition of 
ozone. If R is identified as an ozone molecule, 
I as an oxygen-atom and P as an oxygen molecule, 
the kineticist will quickly recognize the generally 
accepted decomposition scheme [14]. 

k i  

k z  
R + M e I + P + M  

k 3  

R + I + P  

where M represents either an ozone, an oxygen or 
an inert molecule. To each of these molecules is 
ascribed an efficiency, not necessarily the same for 
the forward and back reaction, which accounts for 

reaction to proceed. A case of interest to the kine- 
ticist is that of very dilute ozone-oxygen mixtures 
so that M may be replaced by P, which is assumed 
to have an efficiency of one half in the forward 
reaction and of one in the reverse reaction. Thus, 
if 

then the appropriate differential equations are 

Now, if as in the previous examples we introduce 

solutions, we can show that for the “outer” per- 
turbation functions 

, 
~ perturbation expansions for the “outer” and “inner” 

q = 2  

the effectiveness of that molecule in causing the etc. 
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while for the “inner” perturbation functions 

101 

dY, 
d o  ’ n = O  - = o  ( 0 )  

Y,(O) = 1 

( 0 )  

Y,(O) = 0 . 

(21 

dY, ( 1 )  ( 0 )  (1 )  ( 1 )  ( 0 )  

n = 2  - = - Y , - ( Y , Y , + Y , Y , ) +  
dw 

( 0 )  

+ i , Y , ,  

1 1 )  

Y,(O) = 0 

( 2 )  

Y,(O) = 0 

( 1 )  ( 1 )  ( 1 )  (2) 

- Y,Y, - n,y,, Y2(0) = 0 

etc. The “outer” solutions are 

1 
y,  = Co exp( -22) + - [A1 + C ,  exp( -2211 + rz 

v 

exp(4t)[21, + 2 + C, exp(-2r)] 

+ O(f) 

1 
Y1 = 1 + T [- 2 0  + 1 - exp(-w)] + 

A 

1 
i 

+ 7 [2{oZ - o(l - A,) + 1) + 
+ {- w2 + 4 2 ,  + 1) - 3 - exp(-w)} 

(: 1 1 
2, 
1 

Z ; = 1 - e x p ( - o ) + - ( { - 0 2 + w ( i , + 1 ) -  I 

exp(-a)] - - 3A,[1 - exp(-w)] + 0 3 

- 1 + exp( - w) }  exp( - w )  - 

- i,[l - exp(-w)]) + 0 - G) 
and these can be matched in the manner already 
described if 

c o = l ,  C , = l - A , ,  

c, = 2 + - 4 (i, - 5) 
2 

Once again we observe, however, that as was the 
case with the previous example, the “outer” 
solution will break down when 

1, 21 - exp(2t) = 
AC, A 

exp(2z) 2: 1 

or 
t $ In(;) 

For the rate constants reported by BENSON and 
AXWORTHY [14] and a 5 m/o initial ozone concen- 
tration at 750°K and 1 atm oxygen this corresponds 
to 

T N 1.7 

Hence, since the Q.S.S.A becomes invalid for 
larger T, another expansion must be sought for the 
“far out” region, which, as in the previous example, 
may be accomplished by a transformation of both 
T and the dependent variables. Thus, with 

q = 1 exp(-27) 

21 = A Y l ,  22 = Y ,  
equations (14) and (15) are transformed into 

while the inner solutions are 
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with the requirement that as r]  + 00, z1 -P q, z2 + 1. 
Equations (16) and (17) may next be integrated 

either numerically or by the method of successive 
approximations [15]. Thus, if in equation (16) z2 
is considered a function of r]  and, in equation (17), 
zl, is taken as a function of r]  we can easily show 
that, formally, 

and 

in which the constants C and C, must be evaluated 
from the matching conditions that as r]  + co, 
Z ]  -P ‘I 2 2 ,  --f 1. 

This system may now be solved by letting 
z1 = r]  in equation (19) and noting that C, = 0 
so that 

J V  

which may in turn be substituted into equation ( I  8) 
to yield an improved approximation to zl. The 
iteration can then be repeated until the desired 
accuracy is reached. 

The solution just obtained will of course be ac- 
curate only up to terms of O(l/A) since it has been 
matched only to the first term of the “outer” 
solution. Additional terms may then be generated 
by a straight forward perturbation expansion which, 
as can easily be shown, will hold throughout the 
complete “outer” region. Thus, as in the previous 
section, it may be argued once again that perhaps 
the Q.S.S.A. and the resulting perturbation expan- 
sion may appear unnecessary since they can be 

L 

replaced by a different solution which will be 
uniformly valid throughout the complete “outer” 
region. It is clear on the other hand though that, 
in contrast to this more general solution, the 
Q.S.S.A. has the great advantage of allowing us to 
construct an analytic solution, which although not 
valid for all z > O( 1 /A) is at least applicable to that 
part of the “outer” region which is in general the 
one of most importance. 

The solutions for the reactive intermediate in the 
three regimes are plotted in Fig. 3. Values of 
2, = 3-0 and A = 98 correspond to those that may 
occur for dilute ozone decomposing isothermally at 
approximately 750°K. 

CONCLUDING REMARKS 

The examples which have been presented so far 
will, it is hoped, illustrate the power and versatility 
of the singular perturbation technique as applied 
to problems in chemical kinetics. It should be re- 
vealed in closing, however, that an expansion of 
the form 

186 

FIG. 3. History of concentration of intermediate 1 

species for the case of 

1 k 3  
R + M Z I + P + M ;  R + I + P  

k2 

kz kdR1o = 98 with A 1  = 2-  [PI0 = 3 and h = 2 -  
ki ki[P]o 

[MI taken equal to [PI with efficiency of 1/2 forward 
and 1 backward, while [PI = [PI0 

1, inner solution to O(l/h2); 2, outer solution to 
O(l /A2);  3, “far out” solution to O ( i / A ) ;  4, Q.S.S.C. 
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which up to now has been employed throughout 
the paper for both the “inner” and the 
solutions may not under certain conditions be the 

for his valuable comments on the subject and M. PATTERSON 
for his assistance in preparing graphs and performing the 
necessary calculations. 

proper one, in the sense that the coefficients of the 
perturbations series need not necessarily be re- 
stricted to simple powers of l/A. A more general 
approach would consist therefore of representing 
the appropriate function y as 

in which the unknown functions ,f,(l)-not 
necessarily simple powers of 1 /%-would have to 
be determined from the matching condition be- 
tween the “outer” and the “inner” solutions. It 
can easily be shown, of course, that, for the four 
examples considered in this paper, fn = I/].’’ but, 
as has already been observed for certain classical 

NOTATION 
Constants of integration 
Constants of integrations produced by ith perturbation 
function. 
Concentration of reactive intermediate 
Chemical reaction rate constant for reaction i 
Concentration of product 
Concentration of reactant 
Dimensional time 
Dimensionless concentration of species i in the “inner” 
region 

‘p: nth order perturbation function for the “inner” 
solution 

yi Dimensionless concentration of species i in the “outer’‘ 
region 

k) nth order perturbation function for the “outer” 
solution 

problems in fluid mechanics and heat transfer [7, 81, 
this simplification may not, in general, always be 
permissible. Fortunately however, a pleasing and fi  Dummy vanable of integration 
valuable property of the singular perturbation E Equilibrium departure term 

ment cannot be satisfied unless the proper expansion 
has a priori been postulated. 

Acknowledgement-The authors take pleasure in thanking T Dimensionless time 
Professor MICHEL BOUDART for suggesting this problem and 

& Exact solution for species i 
zi Dimensionless concentration of species i in the “far 

out” region 

7 Dimensionless time variable for the “far out” region 

reaction rate constant 
XI Dimensionless chemical reaction rate parameter for 

reaction i 

UJ Dimensionless time variable for the “inner” region 

technique is that, in general, the matching require- perturbation parameter-a dimensio~ess 
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RBsumB-L‘approximation bien connue de l’etat metastable dans l’etude cinetique d’un processus 
chimique peut &re amelioree de facon rigoureuse au moyen d’une technique mathematique : la 
mCthode des perturbations singulieres. Les traits essentiels de cette technique sont mis en evidence 
par l’etude cinetique des 4 processus. 

R + I + P ;  R e I S P  
R + I ;  2 I + P  

et R + M + I + P + M ;  R + I + P  
Le dernier correspondant au cas de la decomposition thermique de l’ozone. 

Zusammenfassung-Es wird gezeigt, dass die bekannte quasi-stationare Naherungslosung fur die 
Kinetik chemischer Reaktionen ganz betrachtlich verbessert werden kann durch die Methode der 
“einmaligen Storung”. 
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